Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 192: 111106, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32474325

RESUMEN

Solanum lycocarpum fruits contain two major glycoalkaloids (GAs), solamargine (SM) and solasonine (SS). These compounds are reported as cytotoxic. However, they have poor water solubility and low bioavailability. To overcome these disadvantages and getting an efficient formulation the current study aimed to develop, characterize, and test the effectiveness of a nanotechnology-based strategy using poly(D,L-lactide) (PLA) nanoparticles functionalized with folate as delivery system of glycoalkaloidic extract (AE) for bladder cancer therapy. The strategic of adding folic acid into nanoformulations can increase the selectivity of the compounds to the cancer cells reducing the side effects. Our results revealed the successful preparation of AE-loaded folate-targeted nanoparticles (NP-F-AE) with particle size around 177 nm, negative zeta potential, polydispersity index <0.20, and higher efficiency of encapsulation for both GAs present in the extract (>85 %). To investigate the cellular uptake, the fluorescent dye coumarin-6 was encapsulated into the nanoparticle (NP-F-C6). The cell studies showed high uptake of nanoparticles by breast (MDA-MB-231) and bladder (RT4) cancer cells, but not for normal keratinocytes cells (HaCaT) indicating the target uptake to cancer cells. The cytotoxicity of nanoparticles was evaluated on RT4 2D culture model showing 2.16-fold lower IC50 than the free AE. Furthermore, the IC50 increased on the RT4 spheroids compared to 2D model. The nanoparticles penetrated homogeneously into the urotheliumof porcine bladder. These results showed that folate-conjugated polymeric nanoparticles are potential carriers for targeted glycoalkaloidic extract delivery to bladder cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...